$\boldsymbol{\mathscr{T}}$ and $\boldsymbol{\mathscr{NT}}$

We say a deterministic TM has time-complexity T(n) if for every input w with length |w| = n the TM halts (whether or not it accepts w) after T(n) steps. The class \mathscr{P} is { L | L is a language accepted by some TM with polynomial time complexity} We say that a non-deterministic TM has time-complexity T(n) if for every input w with length n the TM can halt after T(n) steps, in an Accept state if the TM accepts w. The class \mathcal{NP} is { L | L is a language accepted by some non-deterministic TM with polynomial time complexity} While you can ask if any language is in \mathscr{P} or $\mathscr{N}\mathscr{P}$ we are often interested in algorithmic questions such as "Find the shortest path from node q₁ to node q₂ in this weighted graph." That translates to a \mathscr{F} or $\mathscr{N}\mathscr{F}$ question by looking at the language {g1110ⁿ | g is an encoding of a weighted graph and the graph has a path of length n or less from node q_1 to node q_2 A TM might determine if g1110ⁿ for a particular graph g and a particular n is in this language by finding a path from q_1 to q_2 with length n.

Note that a non-deterministic TM can solve this by guessing the sequence of nodes on the shortest path from q_1 to q_2 and then verifying in polynomial time that these nodes do form a path from q_1 to q_2 and that the sum of the lengths of the edges on this path is no more than n.

Many people describe \mathscr{P} as the set of problems that can be *solved* in polynomial time while $\mathscr{N}\mathscr{P}$ is the set of problems for which a solution can be *verified* in polynomial time.

It is obvious that \mathscr{P} is a subset of \mathscr{NP} . Perhaps the most important unsolved question in CS is: Is $\mathscr{P} = \mathscr{NP}$? This question arises from Cook's (or Cook-Levin) Theorem, which says that if one specific language L is in \mathscr{P} then $\mathscr{P} = \mathscr{NP}$. Let L be a language in \mathcal{NP} . We say L is NP-complete if for every language A in \mathcal{NP} there is a polynomial time reduction of A to L in the sense that we can covert any string w in polynomial time to a string w' so that w is in A if and only if w' is in L. A polynomial-time decider for L then gives us a polynomial-time decider for every language A in \mathcal{NP} . In other words, if L is NP-complete and L is in \mathscr{P} , then every problem that can be verified in polynomial-time could actually be solved in polynomial-time. That would have enormous ramifications.

We say a language L is NP-hard if every language A in \mathcal{NP} reduces to

- L. So to be NP-complete a language must be
 - a) In $\mathcal{N}\mathcal{P}$
 - b) NP-hard

Boolean expressions.

We will use Λ , V, and \sim to represent the Boolean operators *and*, *or*, and *not*.

Definition: A Boolean expression is

- a) A variable that can have value T or F
- b) $e \wedge f$, $e \vee f$, $\sim e$, or (e) where e and f are Boolean expressions

For example, $x \land (y \lor z)$ is a Boolean expression

Given values of the variables we can find the value of this expression: build a parse tree for it (linear time) and pass the Boolean values up the tree from the leaves to the root:

Given a Boolean expression we can find if there is a set of assignments to its variables for which the expression evaluates to T. We say such an expression is *satisfiable*. For example, we could build a truth table for it:

x	У	Z	x ∧ ~(y ∨ z)
Т	Т	Т	F
Т	Т	F	F
Т	F	Т	F
Т	F	F	Т
F	Т	Т	F
F	Т	F	F
F	F	Т	F
F	F	F	F

Unfortunately, a truth table with k variables has 2^k lines so it can't be completed in polynomial time.

SAT is the language of satisfiable Boolean expressions.

Ex: $x \land (y \lor z)$ is in SAT: take x=T, y=F, z=F Ex: $x \land (y \lor x)$ is not in SAT Cook's Theorem (Stephen Cook, U. Toronto, 1971): SAT is NPcomplete.

It is easy to see that SAT is in \mathcal{NP} : Guess the right values of the variables and verify them by evaluating a parse tree for the expression. This takes linear time.

To prove Cook's Theorem we need to show that every \mathcal{NP} problem reduces in polynomial time to SAT.

Let L be any language in NP. This means there is a non-deterministic TM M that accepts L and M halts on any input w in time p(|w|) for some polynomial p.

To prove Cook's Theorem we will produce from M and w a Boolean expression that is satisfiable if and only if M accepts w.

Suppose w is any string with |w| = n and M is any TM. If M accepts w there is a sequence of configurations $\alpha_0 \alpha_1 \dots \alpha_{p(n)}$ so that

- a) α_0 is the initial configuration for the computation of M on w
- b) Each $\alpha_i \Rightarrow \alpha_{i+1}$
- c) $\alpha_{p(n)}$ is a configuration in an accept state.

We will create a Boolean expression B that is satisfiable if and only if such a sequence of configurations is possible. So if SAT is in \mathscr{P} we can show L is in \mathscr{P} :

- a) Start with a nondeterministic TM that accepts L
- b) For any string w construct B in polynomial time
- c) determine if B is in SAT in polynomial time
- d) B is in SAT if and only if w is in L

Note that we need to construct B in polynomial time, so it is important that |B| be a polynomial function of |w|.

In k steps we can write at most |w|+k symbols on the tape so we'll assume the non-blank portion of the tape is no longer than p(n).

Also, we 'll assume the TM runs exactly p(n) steps for any input w with |w| = n

Here is some notation we'll use:

 X_{ij} is the jth symbol of the ith configuration. If the 4th configuration is 11q₂00 then $X_{30} = 1$, $X_{31} = 1$, $X_{32} = q_2$, $X_{33} = 0$, and $X_{34} = 0$

For any tape symbol or state A, Y_{ijA} is a Boolean variable whose intuitive meaning is " X_{ij} ==A"

We will assume the start state of any TM is q_1 .

The Boolean expression we will construct is B=S Λ N Λ F where

- S says the first configuration is $q_1 w$ (where q_1 is the start state of the TM)
- N says each configuration is derived from the previous one.
- F says that in the p(n)th configuration the TM is in a final state

S and F are easy; N takes some work.

Step 1: If input w is $a_1a_2...a_n$ then $S = Y_{00q1} \wedge Y_{01a1} \wedge Y_{02a2}... \wedge Y_{0nan}$

Step 2: Let $q_{f_1}..q_{f_k}$ be all of the final states of M.

- Let F_{ji} be $Y_{p(n)jqfi}$ This says the jth symbol of the last configuration is q_{fi} Let F_j be $F_{j1} \vee F_{j2} \vee .. \vee F_{jk}$ This says the jth symbol of the last configuration is a final state.
- Finally, F is $F_0 \vee F_1 \vee ... \vee F_{p(n)}$ this says the TM accepts w.

Note that |Fj| is independent of w, so |S| and |F| are both O(p(n))

Step 3: We only need N, which says that each configuration is derived from the previous one. In fact, we'll make

$$N = N_0 \land N_1 \land ... \land N_{p(n)-1}$$

where N_i says that configuration i+1 is derived from configuration i.

To make Ni we need two kinds of subexpressions:

A_{ij} will say that the state symbol of the ith configuration is at position j and also that the j-1st, jth, and j+1st symbols of the i+1st configuration are correct for the corresponding transition of M.

B_{ij} will say that either the state symbol of the ith configuration is at position j-1 or j+1 (and so symbol j is covered by A_{ij}) or else position j has a tape symbol that is copied correctly from configuration i to configuration i+1.

Given these, $N_i = (A_{i0} \vee B_{i0}) \wedge (A_{i1} \vee B_{i1}) \wedge \dots \wedge (A_{ip(n)} \vee B_{ip(n)})$

Let's pause for an example. Suppose the ith configuration is $010q_110$ and M has transition $\delta(q_1, 1) = (q_2, 1, R)$. We want the i+1st configuration to be $0101q_20$.

 B_{i0} will say the initial 0 is copied correctly B_{i1} will say the 1 is copied correctly B_{i2} will say T B_{i3} will say F A_{i3} will say 0q₁1 is changed to 01q₂ B_{i4} will say T B_{i5} will say the final 0 is copied correctly To make Bij, let $t_1...t_k$ be all of the tape symbols and $q_1..q_m$ all of the states.

$$B_{ij} = (Y_{i(j-1)q1} \lor Y_{i(j-1)q2} \lor \ldots \lor Y_{i(j-1)qm}) \lor (Y_{i(j+1)q1} \lor Y_{i(j+1)q2} \lor \ldots \lor Y_{i(j+1)qm})$$

$$\lor [(Y_{ijt1} \land Y_{(i+1)jt1}) \lor (Y_{ijt2} \land Y_{(i+1)jt2}) \lor \ldots \lor (Y_{ijtk} \land Y_{(i+1)jtk})]$$

Note that |Bij| has nothing to do with the input w.

A_{ii} describes the legal transitions..

Suppose we have a move to the right: $\delta(q_s,a)=(q_t,b,R)$

If the ith configuration is $\alpha cq_s a\beta$ with q_s at position j, we want the i+1st configuration to be $\alpha cbq_t\beta$

The phrase of Aij for this is $p = Y_{ijqs} \wedge Y_{i(j+1)a} \wedge Y_{(i+1)jb} \wedge Y_{(i+1)(j+1)qt} \\ \wedge [(Y_{i(j-1)t1} \wedge Y_{(i+1)(j-1)t1}) \vee ... \vee (Y_{i(j-1)tk} \wedge Y_{(i+1)(j-1)tk})]$ On the other hand suppose we have a move left: $\delta(q_s,a)=(q_t,b,L)$

If the ith configuration is $\alpha cq_s a\beta$ with q_s at position j, we want the i+1st configuration to be $\alpha q_t cb\beta$. The phrase of Aij for this is

$$p = Y_{ijqs} \wedge Y_{(i+1)(j-1)qt} \wedge Y_{i(j+1)a} \wedge Y_{(i+1)(j+1)b} \\ \wedge [(Y_{i(j-1)t1} \wedge Y_{(i+1)jt1}) \vee ... \vee (Y_{i(j-1)tk} \wedge Y_{(i+1)jtk})]$$

If M has L transitions and p_{ijt} is the corresponding A_{ij} phrase for transition t then

$$A_{ij} = p_{ij1} \vee p_{ij2} \vee \ldots \vee p_{ijL}$$

This completes the construction. Note that this seamlessly incorporates the nondeterminism of the TM: SAT's question about whether *some* assignment of variables satisfies B corresponds to the nondeterministic question of whether there is *some* valid sequence of configurations that gets to a terminal state.

```
Now, how big is B? B = S \land N \land F

|S| = O(n)

|F| = O(p(n))

|N| = O(p^2(n))
```

This completes the proof that SAT is NP-complete.