
P and NP



We say a deterministic TM has time-complexity T(n) if for every 
input w with length |w| = n the TM halts (whether or not it accepts  
w) after T(n) steps.  The class P is { L | L is  a language accepted by 
some TM with polynomial time complexity}  



We say that a non-deterministic TM has time-complexity T(n) if for 
every input w with length n the TM can halt after T(n) steps, in an 
Accept state if the TM accepts w. The class NP is { L | L is  a language 
accepted by some non-deterministic TM with polynomial time 
complexity} 



While you  can ask if any language is in P or NP we are often 
interested in algorithmic questions such as "Find the  shortest path 
from node q1 to node q2 in this weighted graph."  That translates to a 
P or NP question by looking at the language {g1110n |  g is an 
encoding of a weighted graph and the graph has a path of length n or 
less from node q1 to node q2}  A TM might determine if g1110n for a 
particular graph g and a particular n is in this language by finding a 
path from q1 to q2  with length n.  



Note that a non-deterministic TM can solve this by guessing the 
sequence of nodes on the shortest path from q1 to q2 and then 
verifying in polynomial time that these nodes do form a path from q1

to q2 and that the sum of the lengths of the edges on this path is no 
more than n.



Many people describe P as the set of problems that can be solved in 
polynomial time while NP is the set of problems for which a 
solution can be verified in polynomial time.

It is obvious that P is a subset of NP.  Perhaps the most important 
unsolved question in CS is:  Is P = NP?  This question arises from 
Cook's  (or Cook-Levin) Theorem, which says that if one specific 
language L is in P then P=NP. 



Let L be a language in NP.   We say L is NP-complete if for every 
language A in NP there is a polynomial time reduction of A to L in 
the sense that we can covert any string w in polynomial time to a 
string w' so that w is in A if and only if w' is in L.  A polynomial-time 
decider for L then gives us a polynomial-time decider for every 
language A in NP.  



In other words, if L is NP-complete and L is in P, then every problem 
that can be verified in polynomial-time could actually  be solved in 
polynomial-time.  That would have enormous ramifications. 



We  say a language L is NP-hard if every language A in NP reduces to 
L.  So to be NP-complete a language must be

a) In NP
b) NP-hard



Boolean expressions.   
We will use ∧, ∨, and ~ to represent the Boolean operators and, or, 
and not.  

Definition: A Boolean expression is
a) A variable that  can have value T or F
b) e ∧ f, e ∨ f, ~e, or (e) where e and f are Boolean expressions

For example, x ∧ ~(y ∨ z) is a Boolean expression



Given values of the variables we can find the value of this expression: 
build a parse tree for it (linear time) and pass the Boolean values up 
the tree from the leaves to the root:

∧

x ~

∨

y z



Given a  Boolean expression we  can find if there is a set of 
assignments to its variables for which the expression evaluates to T.  
We say such an expression is satisfiable.  For example, we could build  
a truth table for it:

x y z x ∧ ~(y ∨ z) 

T T T F

T T F F

T F T F

T F F T

F T T F

F T F F

F F T F

F F F F



Unfortunately, a truth table with k variables has 2k lines so it can't be 
completed in polynomial time.



SAT is the language of satisfiable Boolean expressions.

Ex: x ∧ ~(y ∨ z)  is in SAT: take x=T, y=F, z=F
Ex: x ∧ ~y ∧(y ∨ ~x) is not in SAT



Cook's Theorem (Stephen Cook, U. Toronto, 1971): SAT is NP-
complete.

It is easy to see that SAT is in NP: Guess the right values of the 
variables and verify them by evaluating a parse tree for the 
expression. This takes linear time.

To prove Cook's Theorem we need to show that every NP problem 
reduces in polynomial time to SAT.



Let L be any language in NP.  This means there is a non-deterministic 
TM M  that accepts L and M halts on any input w in time p(|w|) for 
some polynomial p.

To prove Cook's  Theorem we will produce from M and w a Boolean 
expression that is satisfiable if and only if M accepts w.

Suppose w is any string with |w| = n and M is any TM.  If M accepts w 
there is a sequence of configurations a0 a1 ... ap(n) so that

a) a0 is the initial configuration for the computation of M on w
b) Each ai => ai+1

c) ap(n) is a configuration in an accept state.



We will  create a Boolean expression B that is satisfiable if and only 
if such a sequence of configurations is possible.  So if SAT is in P we 
can show L is in P:

a) Start with a nondeterministic TM that accepts L
b) For any string w construct  B in polynomial time
c) determine if B is in SAT in polynomial time
d) B is in SAT if and only if w is in L  



Note that we need to construct B in polynomial time, so it is 
important that |B| be a polynomial function of |w|.

In k steps  we can write at most |w|+k symbols on the tape  so we'll 
assume the non-blank portion of  the tape is no longer than p(n).

Also, we 'll assume the TM runs exactly p(n) steps for any input  w 
with |w|= n



Here is some notation we'll use:

Xij is the jth symbol of the ith configuration. If the 4th configuration is 
11q200 then X30 =1, X31=1, X32=q2, X33=0, and X34=0 

For any tape symbol or state A,  YijA is a Boolean variable whose 
intuitive meaning is "Xij==A"

We will assume the start state of any TM is q1. 



The Boolean expression we will construct is B=S∧N∧F where
• S says the first configuration is q1w  (where q1 is the start state of 

the TM)
• N says each configuration is derived from the previous one.
• F says that in the p(n)th configuration the TM is in a final state

S and F are easy; N takes some work.



Step 1:  If input w is a1a2...an then
S = Y00q1 ∧ Y01a1 ∧ Y02a2... ∧ Y0nan

Step 2:  Let qf1..qfk be all of the final states of M.
Let Fji be Yp(n)jqfi This says the jth symbol of the last configuration is qfi

Let Fj be Fj1 ∨ Fj2 ∨.. ∨ Fjk This says the jth symbol of the last 
configuration is a final state.
Finally, F is F0 ∨ F1 ∨... ∨ Fp(n) this says the TM accepts w.

Note that |Fj| is independent of w, so |S| and |F| are both O( p(n) )



Step 3: We only need N, which  says that each configuration is  
derived from the previous one.  In fact, we'll make

N = N0 ∧ N1 ∧... ∧ Np(n)-1

where Ni says that configuration i+1 is derived from configuration i.



To make Ni we need two kinds of subexpressions:

Aij will say that the state symbol of the  ith configuration is at position 
j and also that the j-1st, jth, and j+1st symbols of the i+1st configuration 
are correct for the corresponding transition of M.

Bij will say that either the state symbol of the ith configuration is at 
position j-1 or j+1 (and  so symbol j is covered by Aij) or else position j 
has a tape symbol that is copied correctly from configuration i to 
configuration i+1. 

Given these, Ni=(Ai0 ∨ Bi0) ∧(Ai1 ∨ Bi1) ∧... ∧ (Aip(n) ∨ Bip(n))



Let's pause for an example.  Suppose the ith configuration is 010q110 
and M has transition d(q1,1)=(q2,1,R).  We want the i+1st

configuration to be 0101q20.

Bi0 will say the initial 0 is copied correctly
Bi1 will say the 1 is copied correctly
Bi2 will  say T
Bi3 will say F
Ai3 will say 0q11 is changed to 01q2

Bi4 will say T
Bi5 will say the final 0 is copied correctly 



To make Bij, let t1...tk be all of the tape symbols and q1..qm all of the 
states.

Bij = (Yi(j-1)q1 ∨ Yi(j-1)q2 ∨... ∨ Yi(j-1)qm) ∨(Yi(j+1)q1 ∨ Yi(j+1)q2 ∨... ∨ Yi(j+1)qm) 
∨[ (Yijt1 ∧ Y(i+1)jt1) ∨ (Yijt2 ∧ Y(i+1)jt2) ∨... ∨(Yijtk ∧ Y(i+1)jtk)]

Note that |Bij| has nothing to do with the input w.



Aij describes the legal transitions..  

Suppose we have a move to the right: d(qs,a)=(qt,b,R)

If the ith configuration is acqsab with qs at position j, we want the 
i+1st configuration to be acbqtb

The phrase of Aij for this is
p = Yijqs ∧ Yi(j+1)a ∧ Y(i+1)jb ∧ Y(i+1)(j+1)qt

∧[(Yi(j-1)t1 ∧ Y(i+1)(j-1)t1)) ∨... ∨(Yi(j-1)tk ∧ Y(i+1)(j-1)tk)] 



On the other hand suppose we have a move left: d(qs,a)=(qt,b,L)

If the ith configuration is acqsab with qs at position j, we want the i+1st

configuration to be aqtcbb. The  phrase of Aij for this is

p = Yijqs ∧ Y(i+1)(j-1)qt ∧ Yi(j+1)a ∧ Y(i+1)(j+1)b

∧[(Yi(j-1)t1 ∧ Y(i+1)jt1)) ∨... ∨(Yi(j-1)tk ∧ Y(i+1)jtk)] 

If M has L transitions and pijt is the corresponding Aij phrase for 
transition t then

Aij = pij1 ∨ pij2 ∨... ∨ pijL



This completes the construction. Note that this seamlessly 
incorporates the nondeterminism of the TM: SAT's question about 
whether some assignment of variables satisfies B corresponds to 
the nondeterministic question of whether there is some valid 
sequence of configurations that gets to a terminal state.

Now, how big is B?  B = S ∧ N ∧ F
|S| = O(n)
|F| = O( p(n) )
|N| = O( p2(n) )

This completes the proof that SAT is NP-complete.


